• Global Warming:

    the threat of a permafrost Carbon – climate feedback

  • We develop and improve

    stable isotopes techniques for ecological applications

  • Plants, fungi and bacteria interact

    at the root-soil interface

  • Probing the future:

    Climate Change experiments

  • Soil is fundamental to human life

  • Tropical rainforests

    hold the key to global net primary productivity

TER News

  • Congratulations – MSc Eva Simon


    Eva successfully defended her Master's thesis "Seasonal responses of microbial growth and respiration to multiple climate change drivers” on Wednesday 14th August 2019!
    Excellent, Eva!

  • Christina Kaiser appointed Assistant Professor


    Christina was promoted to the position of an Assistant Professor (tenure track) as of July 15th, 2019. Congratulations, Christina!

  • TER @ KinderUni

    It's All About Soil: TER @ KinderUni 2019


    Together with a group of 7-10 year old kids, members of TER explored SOIL. From soil sampling and sieving, to measuring soil pH and respiration, and indetifying mycorrhzal root tips ...

  • TER Retreat @ Schloß Drosendorf 2019


    The Division of Terrestrial Ecosystem Research met at Schloss Drosendorf, an idyllic castle North of Austria at the Czech border, for a two-day retreat between June 18th and 19th 2019. ...

Latest publications

A novel isotope pool dilution approach to quantify gross rates of key abiotic and biological processes in the soil phosphorus cycle

Efforts to understand and model the current and future behavior of the global phosphorus (P) cycle are limited by the availability of global data on rates of soil P processes, as well as their environmental controls. Here, we present a novel isotope pool dilution approach using 33Plabeling of live and sterile soils, which allows for high-quality data on gross fluxes of soil inorganic P (Pi) sorption and desorption, as well as of gross fluxes of organic P mineralization and microbial Pi uptake to be obtained. At the same time, net immobilization of 33Pi by soil microbes and abiotic sorption can be easily derived and partitioned. Compared with other approaches, we used short incubation times (up to 48 h), avoiding tracer remineralization, which was confirmed by the separation of organic P and Pi using isobutanol fractionation. This approach is also suitable for strongly weathered and P-impoverished soils, as the sensitivity is increased by the extraction of exchangeable bioavailable Pi(Olsen Pi; 0.5 M NaHCO3) followed by Pi measurement using the malachite green assay. Biotic processes were corrected for desorption/sorption processes using adequate sterile abiotic controls that exhibited negligible microbial and extracellular phosphatase activities. Gross rates were calculated using analytical solutions of tracer kinetics, which also allowed for the study of gross soil P dynamics under non-steady-state conditions. Finally, we present major environmental controls of gross P-cycle processes that were measured for three P-poor tropical forest and three P-rich temperate grassland soils.

Wanek W, Zezula D, Wasner D, Mooshammer M, Prommer J
2019 - Biogeosciences, 16: 3047-3068

Soil multifunctionality is affected by the soil environment and by microbial community composition and diversity

Microorganisms are critical in mediating carbon (C) and nitrogen (N) cycling processes in soils. Yet, it has long been debated whether the processes underlying biogeochemical cycles are affected by the composition and diversity of the soil microbial community or not. The composition and diversity of soil microbial communities can be influenced by various environmental factors, which in turn are known to impact biogeochemical processes. The objectives of this study were to test effects of multiple edaphic drivers individually and represented as the multivariate soil environment interacting with microbial community composition and diversity, and concomitantly on multiple soil functions (i.e. soil enzyme activities, soil C and N processes). We employed high-throughput sequencing (Illumina MiSeq) to analyze bacterial/archaeal and fungal community composition by targeting the 16S rRNA gene and the ITS1 region of soils collected from three land uses (cropland, grassland and forest) deriving from two bedrock forms (silicate and limestone). Based on this data set we explored single and combined effects of edaphic variables on soil microbial community structure and diversity, as well as on soil enzyme activities and several soil C and N processes. We found that both bacterial/archaeal and fungal communities were shaped by the same edaphic factors, with most single edaphic variables and the combined soil environment representation exerting stronger effects on bacterial/archaeal communities than on fungal communities, as demonstrated by (partial) Mantel tests. We also found similar edaphic controls on the bacterial/archaeal/fungal richness and diversity. Soil C processes were only directly affected by the soil environment but not affected by microbial community composition. In contrast, soil N processes were significantly related to bacterial/archaeal community composition and bacterial/archaeal/fungal richness/diversity but not directly affected by the soil environment. This indicates direct control of the soil environment on soil C processes and indirect control of the soil environment on soil N processes by structuring the microbial communities. The study further highlights the importance of edaphic drivers and microbial communities (i.e. composition and diversity) on important soil C and N processes.

Zheng Q, Hu Y, zhang S, Noll L, Böckle T, Dietrich M, Herbold CW, Eichhorst SA, Woebken D, Richter A, Wanek W
2019 - Soil Biology and Biochemistry, 136: Article 107521

Substrate quality and concentration control decomposition and microbial strategies in a model soil system

Soil carbon models typically scale decomposition linearly with soil carbon (C) concentration, but this linear relationship has not been experimentally verified. Here we investigated the underlying biogeochemical mechanisms controlling the relationships between soil C concentration and decomposition rates. We incubated a soil/sand mixture with increasing amounts of finely ground plant residue in the laboratory at constant temperature and moisture for 63 days. The plant residues were rye (Secale cereale, C/N ratio of 23) and wheat straw (Triticum spp., C/N ratio of 109) at seven soil C concentrations ranging from 0.38 to 2.99%. We measured soil respiration, dissolved organic carbon (DOC) concentrations, microbial biomass, and potential enzyme activities over the course of the incubation. Rye, which had higher N and DOC contents, lost 6 to 8 times more C as CO2 compared to wheat residue. Under rye and wheat amendment, absolute C losses as CO2 (calculated per g dry soil) increased linearly with C concentration while relative C losses as CO2 (expressed as percent of initial C) increased with C concentration following a quadratic function. In low C concentration treatments (0.38–0.79% OC), DOC decreased gradually from day 3 to day 63, microbial C increased towards the end in the rye treatment or decreased only slightly with straw amendment, and microbes invested in general enzymes such as proteases and oxidative enzymes. At increasing C levels, enzyme activity shifted to degrading cellulose after 15 days and degrading microbial necromass (e.g. chitin) after 63 days. At the highest C concentrations (2.99% OC), microbial biomass peaked early in the incubation and remained high in the rye treatment and decreased only slightly in the wheat treatment. While wheat lost C as CO2 constantly at all C concentrations, respiration dynamics in the rye treatment strongly depended on C concentration. Our results indicate that litter quality and C concentration regulate enzyme activities, DOC concentrations, and microbial respiration. The potential for non-linear relationships between soil C concentration and decomposition may need to be considered in soil C models and soil C sequestration management approaches.

Schnecker J, Bowles T, Hobbie EA, Smith RG, Grandy AS
2019 - Biogeochemistry, 144: 47-59

Lecture series

Microbial ecology of nitrogen cycling in paddy soils

Yong-Guan Zhu
Research Centre for Eco-Environmental Sciences & Institute of Urban Environment, Chinese Academy of Sciences
09:00 h
Lecture Hall HS 5, UZA2 (Geocentre), Althanstrasse 14, 1090 Vienna

How to meet the Paris 2°C target: Which are the main constraints that will need to be overcome?

Ivan Janssens
Centre of Excellence of Global Change Ecology, University of Antwerp, Belgium
12:00 h
Lecture Hall HS2 (UZA 1), Althanstraße 14, 1090 Vienna

Soil C dynamics –when are microbial communities in control?

Naoise Nunan
Institute of Ecology and Environmental Sciences IEES Paris, France
12:00 h
Lecture Hall HS2 (UZA 1), Althanstraße 14, 1090 Vienna