• Global Warming:

    the threat of a permafrost Carbon – climate feedback

  • We develop and improve

    stable isotopes techniques for ecological applications

  • Plants, fungi and bacteria interact

    at the root-soil interface

  • Probing the future:

    Climate Change experiments

  • Soil is fundamental to human life

  • Tropical rainforests

    hold the key to global net primary productivity

TER News

Latest publications

Combination of techniques to quantify the distribution of bacteria in theirsoil microhabitats at different spatial scales

To address a number of issues of great societal concern at the moment, like the sequestration of carbon, information is direly needed about interactions between soil architecture and microbial dynamics. Unfortunately, soils are extremely complex, heterogeneous systems comprising highly variable and dynamic micro-habitats that have significant impacts on the growth and activity of inhabiting microbiota. Data remain scarce on the influence of soil physical parameters characterizing the pore space on the distribution and diversity of bacteria. In this context, the objective of the research described in this article was to develop a method where X-ray microtomography, to characterize the soil architecture, is combined with fluorescence microscopy to visualize and quantify bacterial distributions in resin-impregnated soil sections. The influence of pore geometry (at a resolution of 13.4 μm) on the distribution of Pseudomonas fluorescens was analysed at macro- (5.2 mm × 5.2 mm), meso- (1 mm × 1 mm) and microscales (0.2 mm × 0.2 mm) based on an experimental setup simulating different soil architectures. The cell density of P. fluorescenswas 5.59 x 107(SE 2.6 x 106) cells g−1 soil in 1–2 mm and 5.84 x 107(SE 2.4 x 106) cells g−1 in 2–4 mm size aggregates soil. Solid-pore interfaces influenced bacterial distribution at micro- and macroscale, whereas the effect of soil porosity on bacterial distribution varied according to three observation scales in different soil architectures. The influence of soil porosity on the distribution of bacteria in different soil architectures was observed mainly at the macroscale, relative to micro- and mesoscales. Experimental data suggest that the effect of pore geometry on the distribution of bacteria varied with the spatial scale, thus highlighting the need to consider an “appropriate spatial scale” to understand the factors that regulate the distribution of microbial communities in soils. The results obtained to date also indicate that the proposed method is a significant step towards a full mechanistic understanding of microbial dynamics in structured soils.

Juyal A, Otten W, Falconer R, Hapca S, Schmidt H, Baveye PC, Eickhorst T
2019 - Geoderma, 334: 165-174

Recognizing Patterns: Spatial Analysis of Observed Microbial Colonization on Root Surfaces

Root surfaces are major sites of interactions between plants and associated microorganisms. Here, plants and microbes communicate via signaling molecules, compete for nutrients, and release substrates that may have beneficial or harmful effects on each other. Whilst the body of knowledge on the abundance and diversity of microbial communities at root-soil interfaces is now substantial, information on their spatial distribution at the microscale is still scarce. In this study, a standardized method for recognizing and analyzing microbial cell distributions on root surfaces is presented. Fluorescence microscopy was combined with automated image analysis and spatial statistics to explore the distribution of bacterial colonization patterns on rhizoplanes of rice roots. To test and evaluate the presented approach, a gnotobiotic experiment was performed using a potential nitrogen-fixing bacterial strain in combination with roots of wetland rice. The automated analysis procedure resulted in reliable spatial data of bacterial cells colonizing the rhizoplane. Among all replicate roots, the analysis revealed an increasing density of bacterial cells from the root tip to the region of root cell maturation. Moreover, bacterial cells showed significant spatial clustering and tended to be located around plant root cell borders. The quantitative data suggest that the structure of the root surface plays a major role in bacterial colonization patterns. Possible adaptations of the presented approach for future studies are discussed along with potential pitfalls such as inaccurate imaging. Our results demonstrate that standardized recognition and statistical evaluation of microbial colonization on root surfaces holds the potential to increase our understanding of microbial associations with roots and of the underlying ecological interactions.

Schmidt H, Nunan N, Höck A, Eickhorst T, Kaiser C, Woebken D, Raynaud X
2018 - Frontiers in Environmental Science, 6: 1-12

Links among warming, carbon and microbial dynamics mediated by soil mineral weathering

Quantifying soil carbon dynamics is of utmost relevance in the context of global change because soils play an important role in land–atmosphere gas exchange. Our current understanding of both present and future carbon dynamics is limited because we fail to accurately represent soil processes across temporal and spatial scales, partly because of the paucity of data on the relative importance and hierarchical relationships between microbial, geochemical and climatic controls. Here, using observations from a 3,000-kyr-old soil chronosequence preserved in alluvial terrace deposits of the Merced River, California, we show how soil carbon dynamics are driven by the relationship between short-term biotic responses and long-term mineral weathering. We link temperature sensitivity of heterotrophic respiration to biogeochemical soil properties through their relationship with microbial activity and community composition. We found that soil mineralogy, and in particular changes in mineral reactivity and resulting nutrient availability, impacts the response of heterotrophic soil respiration to warming by altering carbon inputs, carbon stabilization, microbial community composition and extracellular enzyme activity. We demonstrate that biogeochemical alteration of the soil matrix (and not short-term warming) controls the composition of microbial communities and strategies to metabolize nutrients. More specifically, weathering first increases and then reduces nutrient availability and retention, as well as the potential of soils to stabilize carbon.

Doetterl S, Berhe AA, Arnold C, Bodé S, Fiener P, Finke P, Fuchslueger L, Griepentrog M, Harden JW, Nadeu E, Schnecker J, Six J, Trumbore S, Van Oost K, Vogel C, Boeckx P
2018 - Nature Geoscience, in press

Lecture series

When are Mycorrhizas Mutualisms?

Nancy Collins Johnson
Northern Arizona University, USA
22.05.2018
16:15 h
Hörsaal 2 (UZA 1), Althanstraße 14, 1090 Wien

Plant-soil interactions mediating drought effects in grasslands

Pierre Mariotte
Ecole Polytechnique Federale de Lausanne, Switzerland
09.05.2018
16:00 h
Seminar Room Microbial Ecology, Room number 2.309, UZA 1 Althanstr. 14, 1090 Wien

Routing while Scouting: How a Slime Mould Optimizes its Transportation Network during Exploration

DANIEL SCHENZ
Hokkaido University, Japan
24.04.2018
15:00 h
Seminar room DOME, UZA 1, Althanstrasse 14, 1090 Vienna