Publications

Publications in peer reviewed journals

3 Publications found
  • Application of stable-isotope labelling techniques for the detection of active diazotrophs

    Angel R, Panhölzl C, Gabriel R, Herbold C, Wanek W, Richter A, Eichorst SA, Woebken D
    2018 - Environ Microbiol, 20: 44-61

    Abstract: 

    nvestigating active participants in the fixation of dinitrogen gas is vital as N is often a limiting factor for primary production. Biological nitrogen fixation is performed by a diverse guild of bacteria and archaea (diazotrophs), which can be free-living or symbionts. Free-living diazotrophs are widely distributed in the environment, yet our knowledge about their identity and ecophysiology is still limited. A major challenge in investigating this guild is inferring activity from genetic data as this process is highly regulated. To address this challenge, we evaluated and improved several 15 N-based methods for detecting N2 fixation activity (with a focus on soil samples) and studying active diazotrophs. We compared the acetylene reduction assay and the 15 N2 tracer method and demonstrated that the latter is more sensitive in samples with low activity. Additionally, tracing 15 N into microbial RNA provides much higher sensitivity compared to bulk soil analysis. Active soil diazotrophs were identified with a 15 N-RNA-SIP approach optimized for environmental samples and benchmarked to 15 N-DNA-SIP. Lastly, we investigated the feasibility of using SIP-Raman microspectroscopy for detecting 15 N-labelled cells. Taken together, these tools allow identifying and investigating active free-living diazotrophs in a highly sensitive manner in diverse environments, from bulk to the single-cell level.

  • Full 15N tracer accounting to revisit major assumptions of 15N isotope pool dilution approaches for gross nitrogen mineralization

    Braun J, Mooshammer M, Wanek W, Prommer J, Walker TWN, Rütting T, Richter A
    2018 - Soil Biology and Biochemistry, 117: 16-26
  • In situ observation of localized, sub-mm scale changes of phosphorus biogeochemistry in the rhizosphere

    Kreuzeder A, Santner J, Scharsching V, Oburger E, Hoefer C, Hann S, Wenzel WW
    2018 - Plant and soil, 1-17

    Abstract: 

    Aims We imaged the sub-mm distribution of labile P and pH in the rhizosphere of three plant species to localize zones and hot spots of P depletion and accumulation along individual root axes and to relate our findings to nutrient acquisition / root exudation strategies in P-limited conditions at different soil pH, and to mobilization pattern of other elements (Al, Fe, Ca, Mg, Mn) in the rhizosphere. Methods Sub-mm distributions of labile elemental patterns were sampled using diffusive gradients in thin films and analysed using laser ablation inductively coupled plasma mass spectrometry. pH images were taken using planar optodes. Results We found distinct patterns of highly localized labile P depletion and accumulation reflecting the complex interaction of plant P acquisition strategies with soil pH, fertilizer treatment, root age, and elements (Al, Fe, Ca) that are involved in P biogeochemistry in soil. We show that the plants respond to P deficiency either by acidification or alkalization, depending on initial bulk soil pH and other factors of P solubility. Conclusions P solubilization activities of roots are highly localized, typically around root apices, but may also extend towards the extension / root hair zone.

Book chapters and other publications

No matching database entries were found.